

GLIMSO

(General Language to Integrate Modeling, Simulation and Optimization)

Hasperué, W. and J. Rabinovich
2014

GLIMSO was developed by Dr. Waldo Hasperué and Dr. Jorge Rabinovich, at the CEPAVE
research center (Center for the Study of Parasites and Vectors), of the National University
of La Plata, La Plata, Argentina., for their own use in scientific research.

The following constitute a brief description of the main commands as well as some
clarification of the language usage.

1. General comment on the use of parentheses and brackets:

 The use of parentheses is to make reference to elements of matrices and vectors.

 The use of square brackets is to make reference to values at simulation time.

2. Section "Parameters"

p = 2
p = condazar (u; 0; 1;> = 0.1; 4; 5)

Choice of a uniform random number between 0 and 1. If the number
chosen at random is greater than or equal to 0.1 the parameter takes the
value 4, otherwise it takes the value 5. This parameter is assigned a random
value in each loop of the simulation time.

p = condazar (u; 0; 1;> = 0.1; 4;> 0; 5; ...; 6)
Choice of a uniform random number between 0 and 1. If the number
chosen at random is greater than or equal to 0.1 the parameter takes the
value 4, otherwise if it is greater than 0 it takes the value 5, otherwise it
takes the value value 6. You can have as many condition-value pairs as
needed. This parameter is assigned a random value in each loop. simulation
time.

p = dn (20; 5)
Choice of a random number with normal distribution with mean 20 and
standard deviation 5. This parameter is assigned a random value in each
loop of the simulation time)

2

sj (11) = 0.42
Declaration of a vector of 11 elements all initialized to 0.42.

fecs (8) = [3 10 0.74 0 0 0 9.32 -0.12324]
Declaration of a vector of 8 elements each initialized with a different value,
the values can be separated by space, tab or comma and could even be
written in vertical one below the other).

3. Section "Variables"

 a = 3
 av (32) = 0

Declaration of a vector of 32 elements all initialized to 0)
 You can also use the function dim to declare vectors and matrices
 PPNAs = dim (8, [1, 2, 3, 4, 5, 6, 7, 8]) #Pivot value of State intervals

4. Section "Restrictions"

 CHIINM => = 0 The variable must always be positive
att => = 0; <= 1 The variable must always be between 0 and 1

5. Section "Initialization"

Initializes the values of the variables (temporary or not). It only runs once before
starting the simulation.

 INMI = 1
AV (1) = 3 AV is either a parameter declared as a vector or a variable

declared as a vector in the "Variable" section
AV (6:32) = 7 Initializes positions 6 to 32 with the value 7) (AV is either a

parameter declared as a vector or a variable declared as a
vector in the "Variable" section

6. Section "Model"

In this section is the simulation "Loop" with all its equations and commands.

7. Section "Finalization"

This section only runs once at the end of the simulation.

8. Differential equations

3

Differential equations begin with dt

 dt a = a * b * c

9. Conditionals

General structure:

Conditional, ", if condition, else default value"

a = b + c, if b> c, else 3
Whether meets the condition the equation is evaluated, otherwise, the

variable is assigned the value by default)

NOTE: If an inverse case condition (else) is applied to a differential equation, the
else assignment is made on the variable.

Example of multiple conditions:

a = b + b, if c> b and f <> k and (o> = 98 or w = q + 3), else 0

10. Use of variables

variable [tx]
It refers to the value of the variable 'x' steps back in the simulation. 'x' can

be a number, a variable or a parameter. The value must always be
an integer

 variable [0]
It refers to the initial value of the variable (time 0)

 a(3)
`` refers to the third position of vector a

a(j + 4-i)
refers to the position j + 4-i of vector a, j + 4-i should result in an integer,

otherwise an exception is raised and the simulation ends
immediately

a(4)[t-2]
refers to position 4 of vector a, but 2 steps back in the simulation)

a(j-1)[0]

refers to the initial value (time 0) of position j-1 of vector a)

4

11. Use of field data

To access data stored as field data:
 b = field_data ("Set.Variable")

If a project has a field data set called "Rains" and in this set there is a variable
called "LaPlata" then to make use of the data from that variable:

 LluviasEnLaPlata = field_data("Lluvias.LaPlata")

12. IF condition

IF condition {
 statements

}
else {
 statements
}

The use of the else is optional. If used it should go immediately on the line under
the stopcock

Examples:

If a = 4 { # An if without else
 b = 4
}

If (a> = 2) and (a <= 5) { # An if with else
 b = 4
}
else {
 b = 3
}

Nested if example
If (a> = 2) and (a <= 5) { # This if has an else
 If b = 4 { # This if does NOT have an else
 c = 3

}
}
else {

5

 if b = 3 { # This if has an else
 d = 3
 }
 else {
 d = 2
 }
}

if Z> 0 {
....
 a = 3
....
}

ELSE {
....
A = 8
....
}

13. Additional format of conditionals

if "Condition" {
 a = 1

b = 2
...

 c = 3
 }

else {
 a = 10

b = 20
...

 c = 30
 }

14. The “For” loop

 For j = 1: 5 { (A loop from 1 to 5)
 A (j + 1) = A (j) / w (j)
 }

Only if the "Condition" is TRUE

Only if the "Condition" is FALSE

6

 For j = 6: 3: -1 { (A loop from 6 to 3 with step -1)
 Equations
 }

For j = s: t: p { (A sat bow with step p; s, typ can be variables or
parameters, as long as they are integers, otherwise
an exception is raised and the simulation ends
immediately)

 Equations
 }

15. Comment, #
 #this is a comment
 # a = b + c this equation does not run
 a = b + c #this equation if executed

16. Arithmetic operators

 + (Sum)
- (Subtraction)
* (Multiplication)
/ (Division)
^ (Power)

17. Logical operators
 >
 <
 > =
 <=
 =
 <> (different)
 and
 or
 not

7

18. Functions

LN(a) (Returns the natural logarithm of a)
LOG10(a) (Returns the decimal logarithm of a)
EXP(a) (Returns the exponential of a)
SIN(a) (Returns the sine of a)
Cos(a) (Returns the cosine of a)
SQR(a) (Returns the square root of a)
ABS(a) (Returns the absolute value of a)

 Mod(a, b) (Returns the remainder of division a / b)
ModT(b) (Calculates the following expression: Mod (T-1, b) +1. Returns a

number between 1 and b depending on the T (time) according to the
following table:

 T Outcome
1 1
2 2
3 3
...
b b
b + 1 1
b + 2 2
...
2 * b b
2 * b + 1 1
2 * b + 2 2
...
...
n * b b
n * b + 1 1
n * b + 2 2
...

Ex:
J = ModT (4)
 T J
 1 1
 2 2
 3 3
 4 4
 5 1
 6 2
 ...

8

NOTE: This function is useful to use as an index of vectors in a particular range as a
function of simulation time.

Sumar(v) (v is a vector, returns the sum of the elements of vector v)
Estbas(v) (v is a vector, returns the sum of the elements of vector v)
Round(v) (Returns the number v rounded)
Trunc(v) (Returns the truncated number v)
Runi(a, b) (Returns a uniform distribution random number between a and b)
Rnormal(a, b) (Returns a random number with normal distribution with mean a

and standcard deviation b)
 Fun_Tasa_Intrinseca(m)

(m is a matrix, returns the r0 of the matrix)
Fun_Tasa_De_Reemplazo(m)

(m is a matrix, returns the R0 of the matrix)
Fun_Tasa_Finita(m)

(m is a matrix, returns the lambda of the matrix)
Fun_Tiempo_Genecional(m)

(m is a matrix, returns the T of the matrix)
 LHP(m)
 (m is an array, returns multiple population parameters):
 'r0_intrinseca',
 'Lambda',
 'R0_replace',
 'T',
 'Mu1',
 'Ro_damping',
 'Life expectancy',
 'Life_Expectation_Variance',
 'Hope_of_life_of_stadium_i',
 'Age_first_production',
 'Var_Mu1',
 'Average_duration_development_estadio_i',
 'Var_Media_duration_development_estadio_i',
 'Fundamental_array',
 'Variance_lambda',
 'SAD',
 'Productive_value',
 'Sensitivity',
 'Elasticity'

9

19. MODEL

The following is an example of indirect ways of doing "conditional jumps" based on a
series of individual conditionals:

a = w + q, if v> 0, else s * t
b = w + 2, if v> 0, else s * tr
c = w + q, if v> 0, else s * t + 3
d = w + q, if v> 0, else s * t-8
e = w + q, if v> 0, else s * t / 4
f = w + q, if v> 0, else s * t ^ 7

